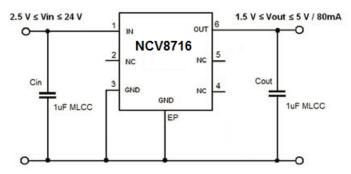
80 mA Ultra-Low Iq, Wide **Input Voltage Low Dropout Regulator**


The NCV8716 is 80 mA LDO Linear Voltage Regulator. It is a very stable and accurate device with ultra-low ground current consumption (4.7 µA over the full output load range) and a wide input voltage range (up to 24 V). The regulator incorporates several protection features such as Thermal Shutdown and Current Limiting.

Features

- Operating Input Voltage Range: 2.5 V to 24 V
- Fixed Voltage Options Available: 1.5 V to 5.0 V
- Ultra Low Quiescent Current: Max. 4.7 µA over Temperature
- ±2% Accuracy over Full Load, Line and Temperature Variations
- PSRR: 60 dB at 100 kHz
- Noise: 200 µV_{RMS} from 200 Hz to 100 kHz
- Thermal Shutdown and Current Limit Protection
- Available in wDFN6, 2x2x0.8 mm Package
- This is a Pb–Free Device

Typical Applications

- Portable Equipment
- Communication Systems

ON Semiconductor®

www.onsemi.com

XX = Specific Device Code = Date Code Μ

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 15 of this data sheet.

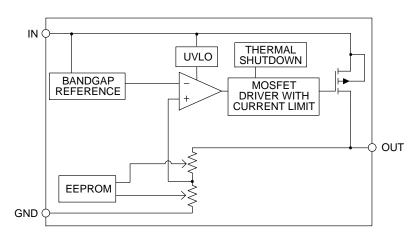


Figure 2. Simplified Block Diagram

Table 1. PIN FUNCTION DESCRIPTION

Pin No. wDFN6, 2 x 2	Pin Name	Description
6	OUT	Regulated output voltage pin. A small 0.47 μF ceramic capacitor is needed from this pin to ground to assure stability.
2	N/C	No connection. This pin can be tied to ground to improve thermal dissipation or left disconnected.
3, EXP	GND	Power supply ground. Exposed pad EXP must be tied with GND pin 3.
4	N/C	No connection. This pin can be tied to ground to improve thermal dissipation or left disconnected.
5	N/C	No connection. This pin can be tied to ground to improve thermal dissipation or left disconnected.
1	IN	Input pin. A small capacitor is needed from this pin to ground to assure stability.

Table 2. ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Input Voltage (Note 1)	V _{IN}	-0.3 to 24	V
Output Voltage	V _{OUT}	–0.3 to 5	V
Output Short Circuit Duration	t _{SC}	Indefinite	S
Maximum Junction Temperature	T _{J(MAX)}	125	°C
Storage Temperature	T _{STG}	-55 to 150	°C
ESD Capability, Human Body Model (Note 2)	ESD _{HBM}	2000	V
ESD Capability, Machine Model (Note 2)	ESD _{MM}	200	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.

This device series incorporates ESD protection and is tested by the following methods: 2.

ESD Human Body Model tested per AEC–Q100–002 (EIA/JESD22–A114) ESD Machine Model tested per AEC–Q100–003 (EIA/JESD22–A115)

Latch up Current Maximum Rating tested per JEDEC standard: JESD78

Table 3. THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal Characteristics, wDFN6, 2 mm x 2 mm Thermal Resistance, Junction-to-Air	R_{\thetaJA}	120	°C/W

Table 4. ELECTRICAL CHARACTERISTICS Voltage version 1.5 V

 $-40^{\circ}C \le T_J \le 125^{\circ}C$; $V_{IN} = 3.0$ V; $I_{OUT} = 1$ mA, $C_{IN} = C_{OUT} = 1.0 \ \mu$ F, unless otherwise noted. Typical values are at $T_J = +25^{\circ}C$. (Note 5)

						,
Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
Operating Input Voltage	I _{OUT} ≤ 10 mA	V _{IN}	2.5		24	V
	10 mA < I _{OUT} < 80 mA		3.0		24	
Output Voltage Accuracy	3.0 V < V _{IN} < 24 V, 0 < I _{OUT} < 80 mA	V _{OUT}	1.455	1.5	1.545	V
Line Regulation	$3.0 \text{ V} \leq \text{V}_{\text{IN}} \leq 24 \text{ V}, \text{ I}_{\text{OUT}} = 1 \text{ mA}$	Reg _{LINE}		20	25	mV
Load Regulation	I _{OUT} = 0 mA to 80 mA	Reg _{LOAD}		20	25	mV
Dropout voltage (Note 3)						
Maximum Output Current	(Note 6)	IOUT	110			mA
Ground current	0 < I _{OUT} < 80 mA, V _{IN} = 24 V	I _{GND}		3.4	5.8	μΑ
Power Supply Rejection Ratio		Hz PSRR		56		dB
Output Noise Voltage	V _{OUT} = 1.5 V, I _{OUT} = 80 mA f = 200 Hz to 100 kHz	V _N		120		μV_{rms}
Thermal Shutdown Temperature (Note 4)	Temperature increasing from $T_J = +25$	°C T _{SD}		155		°C
Thermal Shutdown Hysteresis (Note 4)	Temperature falling from T _{SD}	T _{SDH}	-	25	-	°C

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Not Characterized at $V_{IN} = 3.0$ V, $V_{OUT} = 1.5$ V, $I_{OUT} = 80$ mA 4. Guaranteed by design and characterization.

 Performance guaranteed over the indicated operating temperature range by design and/or characterization production tested at T_J = T_A = 25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible. 6. Respect SOA

Table 5. ELECTRICAL CHARACTERISTICS Voltage version 1.8 V

 $-40^{\circ}C \le T_J \le 125^{\circ}C$; $V_{IN} = 3.0 \text{ V}$; $I_{OUT} = 1 \text{ mA}$, $C_{IN} = C_{OUT} = 1.0 \mu$ F, unless otherwise noted. Typical values are at $T_J = +25^{\circ}C$. (Note 9)

							,
Parameter	Test Conditions		Symbol	Min	Тур	Max	Unit
Operating Input Voltage	I _{OUT} ≤ 10 mA		V _{IN}	2.8		24	V
	10 mA < I _{OUT} < 80 m	nA		3.0		24	
Output Voltage Accuracy	3.0 V < V _{IN} < 24 V, 0 < I _{OUT}	- < 80 mA	V _{OUT}	1.746	1.8	1.854	V
Line Regulation	$3.0 \text{ V} \leq \text{V}_{\text{IN}} \leq 24 \text{ V}, \text{ I}_{\text{OUT}} = 1 \text{ mA}$		Reg _{LINE}		15	20	mV
Load Regulation	I _{OUT} = 0 mA to 80 mA		Reg _{LOAD}		15	20	mV
Dropout voltage (Note 7)							
Maximum Output Current	(Note 10)		I _{OUT}	110			mA
Ground current	0 < I _{OUT} < 80 mA, V _{IN} =	0 < I _{OUT} < 80 mA, V _{IN} = 24 V			3.4	5.8	μΑ
Power Supply Rejection Ratio		f = 100 kHz	PSRR		60		dB
Output Noise Voltage	V _{OUT} = 1.8 V, I _{OUT} = 80 mA f = 200 Hz to 100 kHz		V _N		140		μV _{rms}
Thermal Shutdown Temperature (Note 8)	Temperature increasing from $T_J = +25^{\circ}C$		T _{SD}		155		°C
Thermal Shutdown Hysteresis (Note 8)	Temperature falling from	n T _{SD}	T _{SDH}	-	25	-	°C

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product

25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible. 10. Respect SOA

Table 6. ELECTRICAL CHARACTERISTICS Voltage version 2.5 V

 $-40^{\circ}C \le T_J \le 125^{\circ}C$; $V_{IN} = 3.5 \text{ V}$; $I_{OUT} = 1 \text{ mA}$, $C_{IN} = C_{OUT} = 1.0 \text{ }\mu\text{F}$, unless otherwise noted. Typical values are at $T_J = +25^{\circ}C$. (Note 13)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit	
Operating Input Voltage	I _{OUT} = 80 mA		V _{IN}	3.5		24	V
Output Voltage Accuracy	3.5 V < V _{IN} < 24 V, 0 < I _{OL}	_{JT} < 80 mA	V _{OUT}	2.45	2.5	2.55	V
Line Regulation	V_{OUT} + 1 V \leq V _{IN} \leq 24 V, I	_{OUT} = 1mA	Reg _{LINE}		15	20	mV
Load Regulation	I _{OUT} = 0 mA to 80 mA		Reg _{LOAD}		15	20	mV
Dropout voltage (Note 11)	$V_{DO} = V_{IN} - (V_{OUT(NOM)} - 125 \text{ mV})$ $I_{OUT} = 80 \text{ mA}$		V _{DO}		400	640	mV
Maximum Output Current	(Note 14)		I _{OUT}	110			mA
Ground current	0 < I _{OUT} < 80 mA, V _{IN}	= 24 V	I _{GND}		3.4	5.8	μΑ
Power Supply Rejection Ratio			PSRR		60		dB
Output Noise Voltage	V _{OUT} = 2.5 V, I _{OUT} = 80 mA f = 200 Hz to 100 kHz		V _N		160		μV_{rms}
Thermal Shutdown Temperature (Note 12)	Temperature increasing from $T_J = +25^{\circ}C$		T _{SD}		155		°C
Thermal Shutdown Hysteresis (Note 12)	Temperature falling fro	m T _{SD}	T _{SDH}	-	25	-	°C

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 11. Characterized when V_{OUT} falls 125 mV below the regulated voltage and only for devices with V_{OUT} = 2.5 V 12. Guaranteed by design and characterization.

13. Performance guaranteed over the indicated operating temperature range by design and/or characterization production tested at $T_J = T_A = 25^{\circ}$ C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.

14. Respect SOA

Table 7. ELECTRICAL CHARACTERISTICS Voltage version 3.0 V

 $-40^{\circ}C \le T_J \le 125^{\circ}C$; $V_{IN} = 4.0$ V; $I_{OUT} = 1$ mA, $C_{IN} = C_{OUT} = 1.0 \ \mu$ F, unless otherwise noted. Typical values are at $T_J = +25^{\circ}C$. (Note 17)

Parameter	Test Conditions	Symbol	Min	Тур	Мах	Unit	
Operating Input Voltage	I _{OUT} = 80 mA		V _{IN}	4.0		24	V
Output Voltage Accuracy	$4.3 \text{ V} < \text{V}_{\text{IN}} < 24 \text{ V}, 0 < \text{I}_{\text{OL}}$	_{JT} < 80 mA	V _{OUT}	2.94	3.0	3.06	V
Line Regulation	V_{OUT} + 1 V \leq V _{IN} \leq 24 V, I ₀	_{DUT} = 1 mA	Reg _{LINE}		4	10	mV
Load Regulation	$I_{OUT} = 0 \text{ mA to } 80 \text{ mA}$		Reg _{LOAD}		10	30	mV
Dropout voltage (Note 15)	$V_{DO} = V_{IN} - (V_{OUT(NOM)} - 150 \text{ mV})$ $I_{OUT} = 80 \text{ mA}$		V _{DO}		370	580	mV
Maximum Output Current	(Note 18)		I _{OUT}	110			mA
Ground current	0 < I _{OUT} < 80 mA, V _{IN}	= 24 V	I _{GND}		3.4	5.8	μΑ
Power Supply Rejection Ratio			PSRR		58		dB
Output Noise Voltage	V _{OUT} = 4.3 V, I _{OUT} = 80 mA f = 200 Hz to 100 kHz		V _N		190		μV_{rms}
Thermal Shutdown Temperature (Note 16)	Temperature increasing from $T_J = +25^{\circ}C$		T _{SD}		155		°C
Thermal Shutdown Hysteresis (Note 16)	Temperature falling fro	m T _{SD}	T _{SDH}	-	25	-	°C

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

15. Characterized when V_{OUT} falls 150 mV below the regulated voltage and only for devices with V_{OUT} = 3.0 V 16. Guaranteed by design and characterization.

17. Performance guaranteed over the indicated operating temperature range by design and/or characterization production tested at T_J = T_A = 25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible. 18. Respect SOA

> www.onsemi.com 6

Table 8. ELECTRICAL CHARACTERISTICS Voltage version 3.3 V

 -40° C \leq T_J \leq 125 $^{\circ}$ C; V_{IN} = 4.3 V; I_{OUT} = 1 mA, C_{IN} = C_{OUT} = 1.0 μ F, unless otherwise noted. Typical values are at T_J = +25 $^{\circ}$ C. (Note 21)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit	
Operating Input Voltage	I _{OUT} = 80 mA		V _{IN}	4.3		24	V
Output Voltage Accuracy	$4.3 \text{ V} < \text{V}_{\text{IN}} < 24 \text{ V}, 0 < \text{I}_{\text{OL}}$	_{JT} < 80 mA	V _{OUT}	3.234	3.3	3.366	V
Line Regulation	V_{OUT} + 1 V \leq V _{IN} \leq 24 V, I ₀	_{DUT} = 1 mA	Reg _{LINE}		4	10	mV
Load Regulation	$I_{OUT} = 0 \text{ mA to } 80 \text{ mA}$		Reg _{LOAD}		10	30	mV
Dropout voltage (Note 19)	$V_{DO} = V_{IN} - (V_{OUT(NOM)} - 165 \text{ mV})$ $I_{OUT} = 80 \text{ mA}$		V _{DO}		350	560	mV
Maximum Output Current	(Note 22)		I _{OUT}	110			mA
Ground current	0 < I _{OUT} < 80 mA, V _{IN}	= 24 V	I _{GND}		3.4	5.8	μA
Power Supply Rejection Ratio			PSRR		60		dB
Output Noise Voltage	V _{OUT} = 4.3 V, I _{OUT} = 80 mA f = 200 Hz to 100 kHz		V _N		200		μV _{rms}
Thermal Shutdown Temperature (Note 20)	Temperature increasing from $T_J = +25^{\circ}C$		T _{SD}		155		°C
Thermal Shutdown Hysteresis (Note 20)	Temperature falling fro	m T _{SD}	T _{SDH}	-	25	-	°C

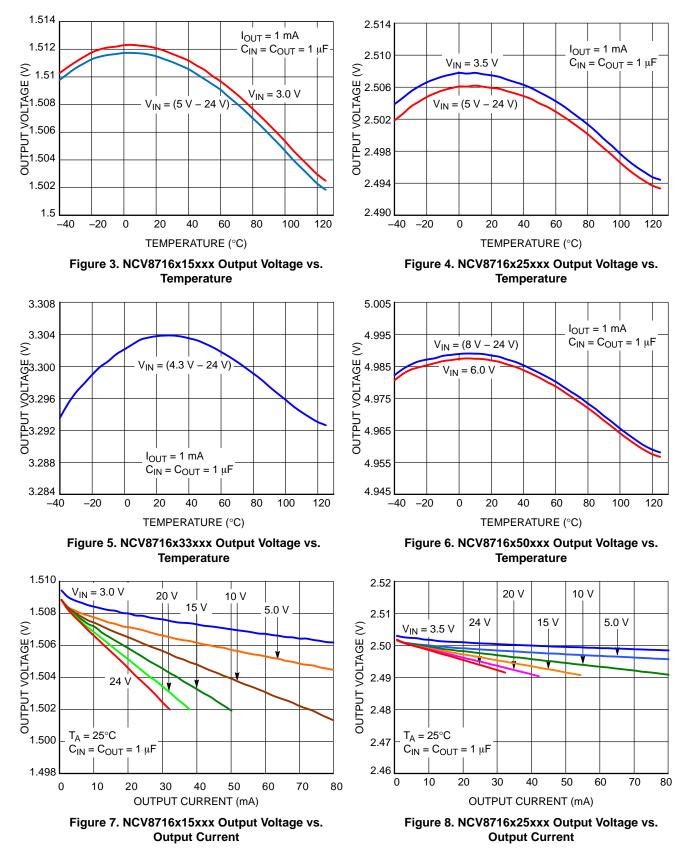
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

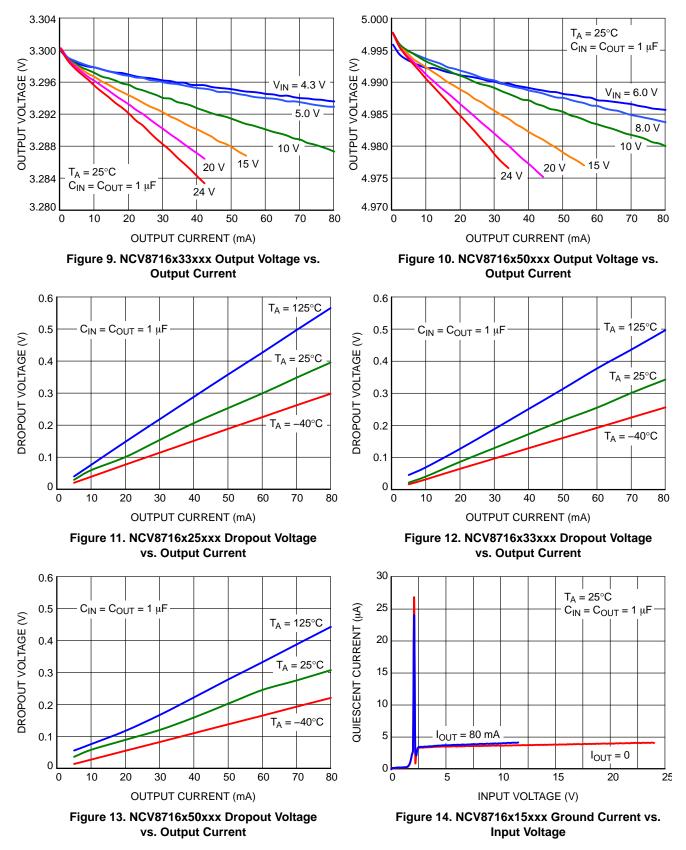
19. Characterized when V_{OUT} falls 165 mV below the regulated voltage and only for devices with V_{OUT} = 3.3 V 20. Guaranteed by design and characterization.

21. Performance guaranteed over the indicated operating temperature range by design and/or characterization production tested at T_J = T_A = 25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.

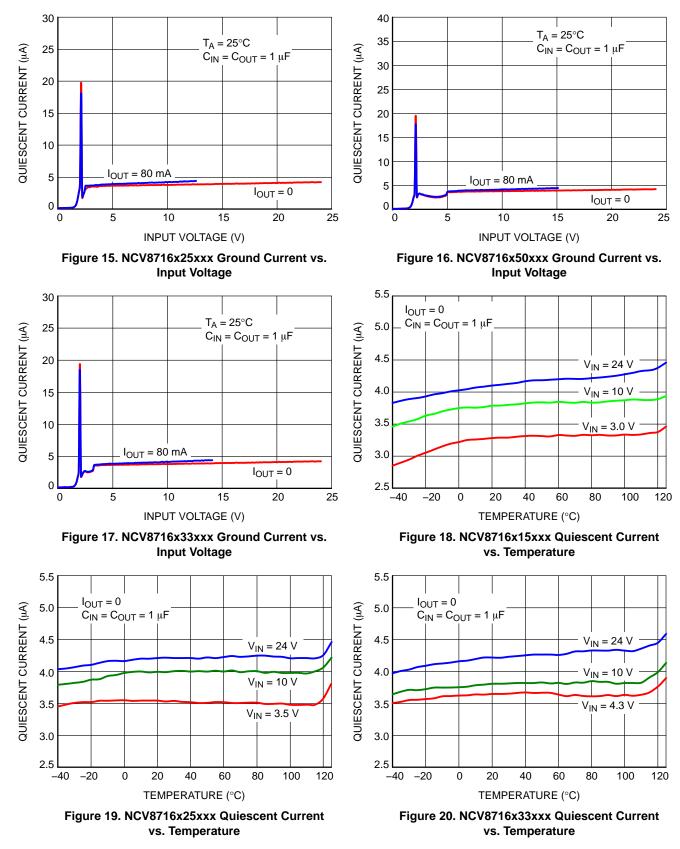
22. Respect SOA

Table 9. ELECTRICAL CHARACTERISTICS Voltage version 5.0 V

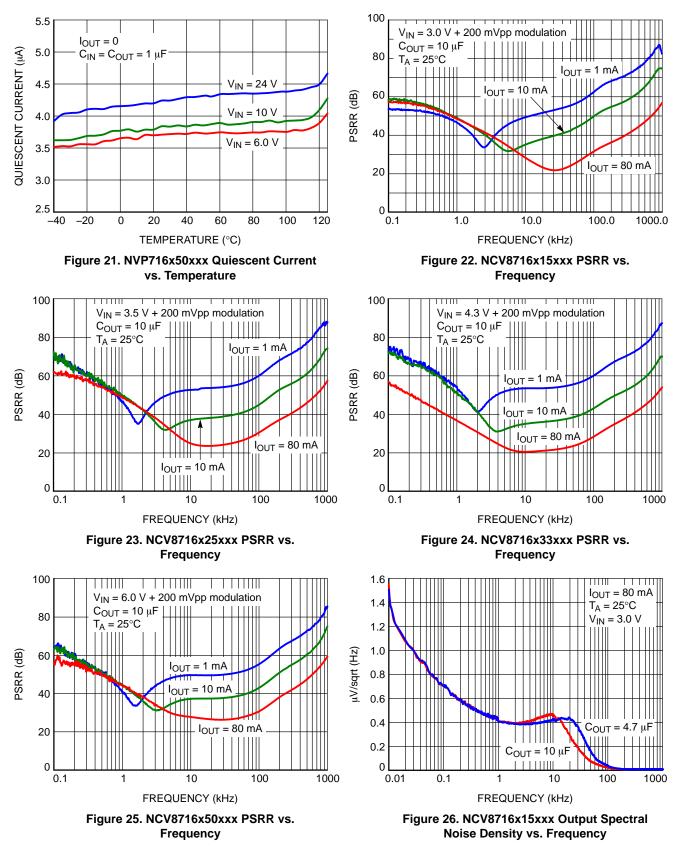

 -40° C \leq T_J \leq 125 $^{\circ}$ C; V_{IN} = 6.0 V; I_{OUT} = 1 mA, C_{IN} = C_{OUT} = 1.0 μ F, unless otherwise noted. Typical values are at T_J = +25 $^{\circ}$ C. (Note 25)

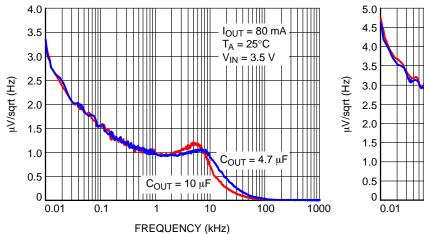

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit	
Operating Input Voltage	I _{OUT} = 80 mA		V _{IN}	6.0		24	V
Output Voltage Accuracy	$6.0 \text{ V} < \text{V}_{\text{IN}} < 24 \text{ V}, 0 < \text{I}_{\text{OL}}$	_{JT} < 80 mA	V _{OUT}	4.9	5.0	5.1	V
Line Regulation	V_{OUT} + 1 V \leq V _{IN} \leq 24 V, I ₀	_{DUT} = 1 mA	Reg _{LINE}		4	10	mV
Load Regulation	I _{OUT} = 0 mA to 80 mA		Reg _{LOAD}		10	30	mV
Dropout voltage (Note 23)	$V_{DO} = V_{IN} - (V_{OUT(NOM)} - 250 \text{ mV})$ $I_{OUT} = 80 \text{ mA}$		V _{DO}		310	500	mV
Maximum Output Current	(Note 26)		I _{OUT}	110			mA
Ground current	0 < I _{OUT} < 80 mA, V _{IN}	= 24 V	I _{GND}		3.4	5.8	μΑ
Power Supply Rejection Ratio			PSRR		54		dB
Output Noise Voltage	V _{OUT} = 5.0 V, I _{OUT} = 80 mA f = 200 Hz to 100 kHz		V _N		220		μV_{rms}
Thermal Shutdown Temperature (Note 24)	Temperature increasing from $T_J = +25^{\circ}C$		T _{SD}		155		°C
Thermal Shutdown Hysteresis (Note 24)	Temperature falling fro	m T _{SD}	T _{SDH}	-	25	-	°C

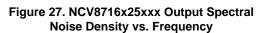
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 23. Characterized when V_{OUT} falls 250 mV below the regulated voltage and only for devices with V_{OUT} = 5.0 V 24. Guaranteed by design and characterization.


25. Performance guaranteed over the indicated operating temperature range by design and/or characterization production tested at T_J = T_A = 25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible. 26. Respect SOA

> www.onsemi.com 8







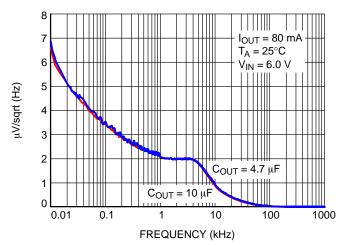


Figure 29. NCV8716x50xxx Output Spectral Noise Density vs. Frequency

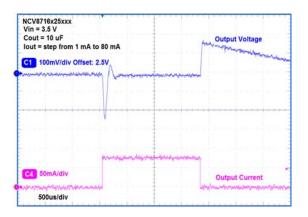


Figure 31. Load Transient Response

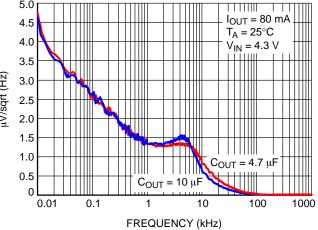


Figure 28. NCV8716x33xxx Output Spectral Noise Density vs. Frequency

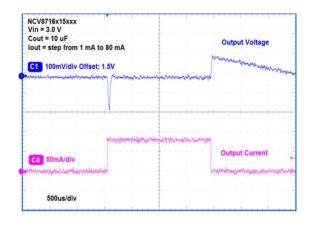


Figure 30. Load Transient Response

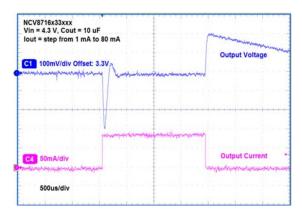


Figure 32. Load Transient Response

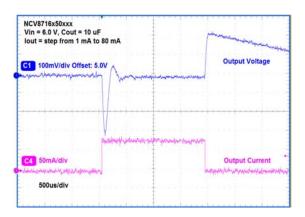


Figure 33. Load Transient Response

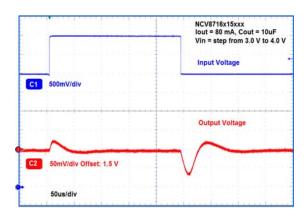


Figure 34. Line Transient Response

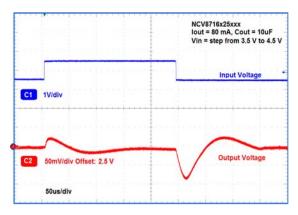


Figure 35. Line Transient Response

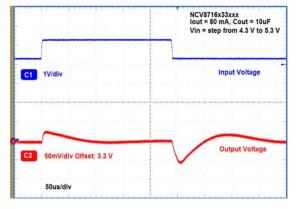


Figure 36. Line Transient Response

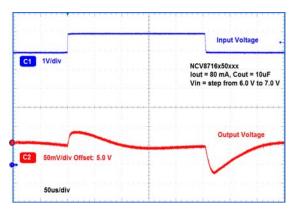


Figure 37. Line Transient Response

APPLICATIONS INFORMATION

The NCV8716 is the member of new family of Wide Input Voltage Range Low Dropout Regulators which delivers Ultra Low Ground Current consumption, Good Noise and Power Supply Rejection Ratio Performance.

Input Decoupling (C_{IN})

It is recommended to connect at least 0.1 μ F Ceramic X5R or X7R capacitor between IN and GND pin of the device. This capacitor will provide a low impedance path for any unwanted AC signals or Noise superimposed onto constant Input Voltage. The good input capacitor will limit the influence of input trace inductances and source resistance during sudden load current changes.

Higher capacitance and lower ESR Capacitors will improve the overall line transient response.

Output Decoupling (COUT)

ORDERING INFORMATION

The NCV8716 does not require a minimum Equivalent Series Resistance (ESR) for the output capacitor. The device is designed to be stable with standard ceramics capacitors with values of 0.47 μ F or greater up to 10 μ F. The X5R and X7R types have the lowest capacitance variations over temperature thus they are recommended.

Power Dissipation and Heat sinking

The maximum power dissipation supported by the device is dependent upon board design and layout. Mounting pad configuration on the PCB, the board material, and the ambient temperature affect the rate of junction temperature rise for the part. The maximum power dissipation the NCV8716 can handle is given by:

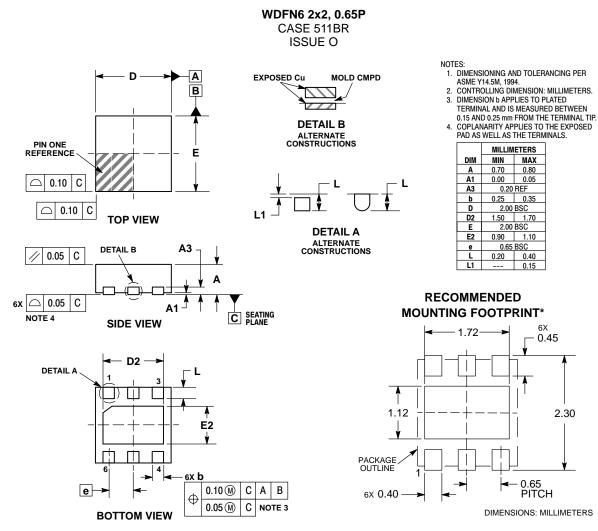
$$P_{D(MAX)} = \frac{\left[T_{J(MAX)} - T_{A}\right]}{R_{\theta JA}}$$
 (eq. 1)

The power dissipated by the NCV8716 for given application conditions can be calculated from the following equations:

$$\mathsf{P}_\mathsf{D} \approx \mathsf{V}_\mathsf{IN} \big(\mathsf{I}_\mathsf{GND} (\mathsf{I}_\mathsf{OUT}) \big) + \mathsf{I}_\mathsf{OUT} \big(\mathsf{V}_\mathsf{IN} - \mathsf{V}_\mathsf{OUT} \big) \quad (\text{eq. 2})$$

or

$$V_{\text{IN(MAX)}} \approx \frac{\mathsf{P}_{\text{D(MAX)}} + \left(V_{\text{OUT}} \times I_{\text{OUT}} \right)}{I_{\text{OUT}} + I_{\text{GND}}} \qquad (\text{eq. 3})$$


Hints

VIN and GND printed circuit board traces should be as wide as possible. When the impedance of these traces is high, there is a chance to pick up noise or cause the regulator to malfunction. Place external components, especially the output capacitor, as close as possible to the NCV8716, and make traces as short as possible.

Device	Voltage Option	Marking	Package	Shipping [†]
NCV8716MT15TBG	1.5 V	7C	wDFN6, 2x2 mm (Pb-Free)	3000 / Tape & Reel
NCV8716MT18TBG	1.8 V	7D	wDFN6, 2x2 mm (Pb-Free)	3000 / Tape & Reel
NCV8716MT25TBG	2.5 V	7E	wDFN6, 2x2 mm (Pb–Free)	3000 / Tape & Reel
NCV8716MT30TBG	3.0 V	7F	wDFN6, 2x2 mm (Pb-Free)	3000 / Tape & Reel
NCV8716MT33TBG	3.3 V	7G	wDFN6, 2x2 mm (Pb–Free)	3000 / Tape & Reel
NCV8716MT50TBG	5.0 V	7H	wDFN6, 2x2 mm (Pb–Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the intervent and the inter

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative